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Graph Anomaly Detection
Based on Steiner Connectivity

and Density

This article focuses on the important problem of anomaly detection in dynamic

networks that evolve over time.

By Jose CADENA™, FENG CHEN, AND ANIL VULLIKANTI

ABSTRACT | Detecting “hotspots” and “anomalies” is a recurring
problem with a wide range of applications, such as social network
analysis, epidemiology, finance, and biosurveillance, among others.
Networks are a common abstraction in these applications for
representing complex relationships. Typically, these networks are
dynamic-, i.e., they evolve over time. A number of methods have
been proposed for anomaly detection in such dynamic network data
sets, which are primarily based on changes in network properties.
We provide a survey of the various formulations of anomaly
detection in dynamic networks with a focus on “window-based”
methods. Window-based methods first define a time window of
past network snapshots to model normal behavior and then mark a
snapshot as anomalous if it has significantly different patterns from
those observed in the time window. We describe two classes of
techniques: 1) generalizations of Steiner connectivity; and 2) dense
subgraph mining. Both have been used extensively in window-
based graph anomaly detection. We summarize the key problem
formulations that have been studied using these approaches, and
we describe details of some of the main techniques.

KEYWORDS | Approximation algorithms; dense subgraph
mining; graph anomaly detection; graph mining; parameter-
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I. INTRODUCTION

Networks (or graphs) have become a popular abstraction
for representing complex relationships in diverse applica-
tions, as diverse as social networks, systems biology, com-
puter security, and finance [2], [31], [36], [61]. Anomaly
detection is the task of finding a part of the graph (i.e.,
nodes, edges, subgraphs) where some “strange” or “unu-
sual” behavior is taking place. What constitutes strange
behavior depends on the nature of the network, and there
has been a lot of work on considering different kinds of
network properties. For instance, anomalies have been
defined in terms of the edges of the network (i.e., anoma-
lous interactions between nodes) [20], [49], [67], [78],
[101], node features (i.e., members of the network who
behave differently compared to other members) [4], [12],
[91], and characteristics of different kinds of subgraphs
[75], [94]. Anomalies have been considered in both static
graphs and dynamic graphs, in which the nodes/edges or
characteristics of nodes/edges (e.g., weights, features)
change over time. See Fig. 1 for an illustration.

There has been extensive research on all these aspects,
and there are multiple surveys that summarize the different
kinds of approaches that have been considered in the litera-
ture, a lot of which are application driven. Akoglu et al. [5]
provide a comprehensive survey of the approaches used for
anomaly detection in static and temporal networks, as well
as a taxonomy for this broad area of research. Shortly after,
Ranshous et al. [82] “zoomed in” on temporal networks
and gave a more detailed comparison of existing methods
for these types of anomalies. However, these surveys do not
go into significant detail about the technical methods used.
We will not attempt to replicate these surveys. Instead, we
briefly summarize the main categories of the approaches
used; then, we delve deeper into two classes of meth-
ods, which rely on interesting graph theoretic properties,
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Fig. 1. Anomaly detection based on Steiner connectivity. Four snapshots of a network of sensors. A blue node (sensor) indicates pollution
at that part of the network. However, individual sensors may become active due to noise. This is the case at times 2 and 3. However, time 4
shows a large subgraph of active sensors. This event detection problem can be cast as finding a connected subgraph with a high proportion
of blue nodes-possibly connected by some white nodes. In this case, we would like to detect the graph circled in red at time 4.

namely, 1) generalizations of Steiner connectivity; and 2)
dense subgraphs. These problems are NP-hard, in general, and
the methods based on these properties rely on rigorous algo-
rithms and heuristics for finding near-optimal solutions. We
describe some of the key families of techniques that have been
developed and used in a number of applications. In particular,
we discuss techniques based on the notion of fixed-parameter
tractability for NP-hard problems [34], where the goal is to
develop algorithms with running time O(a kq(n)), where a is
a small constant, k is a parameter, and q(n) is a polynomial
on n, the problem size. In other words, the complexity scales
exponentially with the parameter k, but polynomially with the
problem size. Such methods provide a promising way to deal
with the NP-hardness of these optimization problems, but they
have not been studied as much in the graph mining literature.

A. Main Categories of Graph Anomaly Research

We broadly follow the taxonomy of [5] and summarize it
here. We first describe some graph theoretical notation that
is used in the discussion below. A static graph G = (V, E) con-
sists of a set V of nodes (which represent entities in an appli-
cation, e.g., people in a social network) and aset E € VX Vof
edges (which represent relationships between the nodes). In
general, graphs are dynamic and change over time. We rep-
resent this by = {G<1), G, G<T>}, where G® (V<t), E(t))
is the graph at time t, also referred to as a “snapshot.” In
many applications, VO = V for all t, i.e., the node set is
unchanged, but the edge set E ® changes as a result of inser-
tions or deletions. Each edge e = (u,v) in E® has a weight
w® (u,v) indicating the strength of the interaction between
u and v at that time step—this can be positive or negative, in
which case, it is referred to as a signed network. We drop the
superscript indicating time when considering static graphs.

1) Static Graphs: Informally, the problem of anomaly
detection on a static graph G calls for finding subgraphs V !
C V that are significantly different than most of the “normal”
patterns observed in that graph. There are a number of ways
to formalize such a difference. One line of work uses struc-
tural properties of a network; these methods define anoma-
lies as subgraphs whose structure is different than the rest of
the graph. For instance, the OddBall approach [4] uses a set
of node-level features, such as the degree and local cluster-
ing, and it identifies a node as anomalous if the features differ
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significantly from the overall distribution. Another line of
work leverages on the community of a graph to find anoma-
lies. A community in a graph is loosely defined as a subset
V' ¢ Vof nodes that have many edges within V' (i.e., they
are densely connected) and few edges to other nodes of the
graph, i.e., to V\V . The community-based methods define
anomalies as nodes or edges that do not clearly belong to any
community; rather, these nodes act as “bridges” and lie in the
boundary between two or more communities. An example of
a community-based method is the work of Sun et al. [95], who
consider communities based on random walks and define a
link as anomalous if it connects nodes that have low likeli-
hood of being in the same community.

Nodes or edges of a graph may also have attributes. For
example, in a social network, attributes of a person (i.e., a
node) would be their hometown, occupation, political and
religious views, etc. This additional information may be
used to define anomalous behavior. A well-known attrib-
ute-based method is the work of Noble and Cook [75]. The
authors use a minimum description length (MDL) approach
for finding frequent subgraphs—subgraphs with low com-
pression cost—when each node has a label. The idea is that
the opposite of “frequent” is anomalous, so graphs that are
hard to compress are labeled as anomalous.

2) Dynamic Graphs: The problem of anomaly detection
in a dynamic or time-evolving graph G = {c®,6?,...,cM}
may be summarized as follows: find 1) a time stamp t or a
time interval [t;,t,], where an event or change point occurs;
and 2) the subgraph V' ¢V, where this change occurs. Akoglu
et al. [5] split the different approaches to anomaly detection in
dynamic graphs into four categories.

+ Feature based, which involve creating a summary for
each snapshot (e.g., by converting it to a vector) and
comparing consecutive snapshots using a distance
function on the summaries. Distance above a certain
threshold between two snapshots indicates a change
point or anomaly between them [3].

+ Decomposition based, which operate on the adjacency
matrix representation of each snapshot, e.g., [3] and
[96], or on the tensor representation of the full net-
work time series, e.g., [11] and [58]. These methods
use the eigenvectors or singular vectors of these rep-
resentations to interpret anomalous events.
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Fig. 2. outline of our survey. We review problem formulations for graph anomaly detection based on Steiner

tivity and d ity.

An arrow A — B indicates that problem B is a particular variant of problem A.

+ Community based, which define anomalies as snap-
shots in the time series whose community structure
differs significantly from snapshots in the recent past.
An example is [77], who propose a Bayesian model of
community structure and a statistical test to detect
change points in dynamic graphs. They use the snap-
shots in a time window [t — W, t] to infer the commu-
nity structure of the graph, and compare it with the
community structure of snapshot t + 1, evaluating the
significance by computing a Bayes factor.

+ Window based, which define a time window of past
snapshots to model normal behavior. Subsequent
snapshots are marked as anomalous if they differ sig-
nificantly from the patterns observed in the time win-
dow. Usually, in this category, the anomaly detection
task is posed as an optimization problem where the
goal is to find the subgraph(s) that maximizes some
distance function between the current snapshot and
the time window. Some examples include [27], [28],
[78],[92], and [101].

B. Our Focus

We focus on the approach of window-based methods for
anomaly detection in dynamic graphs, which are based on
two classes of graph theoretical notions: 1) finding Steiner
subgraphs with certain properties; and 2) finding dense sub-
graphs. Our survey consists of two parts, corresponding to
these two approaches for finding anomalous subgraphs. For
each part, we describe the problem formulations and briefly
explain why the problems are hard in networks. We then dis-
cuss the main techniques and heuristics that have been devel-
oped for these problems and key applications to domains like

biology, fraud detection, cybersecurity, public health, and
bioinformatics. We finish with some conclusions and open
questions. Fig. 2 provides a graphical summary of this survey.

IT. ANOMALY DETECTION BASED ON
STEINER CONNECTIVITY

One popular way of formalizing anomaly detection is through
the family of Steiner connectivity problems, a general class
of optimization problems with connectivity constraints. In
Steiner connectivity problems, we have some nodes of inter-
est—usually called terminals—that we would like to connect
to each other. In order to do so, we may need to include nodes
or edges that are not of interest to us—these are referred to as
Steiner nodes. The challenge is to connect the terminals with
as little extra overhead (i.e., few Steiner nodes) as possible.
The basic Steiner subgraph formulations define a linear cost
objective—e.g., minimize the sum of weights of the edges
used in the solution. For anomaly detection, these formula-
tions have been generalized to more complex objective func-
tions in the form of network scan statistics.

The first proposed problem in the Steiner family is the
minimum Steiner tree problem [52], where the goal is con-
necting a given set of terminal nodes in a graph using a tree
of minimum cost.

Problem 1 (Minimum Steiner Tree): Given a graph G(V, E)
with edge costs or penalties w : E — R and a set of termi-
nal nodes S c V, find a connected subgraph T(V', E’) that
includes all the terminals, i.e., S € V', and minimizes the
cost or total weight of the edges ZeeErw(e).

There are many variations of this basic problem. See [48]
for a compendium of Steiner connectivity formulations. Here,
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we will focus on the prize-collecting versions, which have been
used to model the anomaly detection task. The basic Steiner
connectivity problem requires all the terminal nodes to be
connected. The prize-collecting version relaxes this by con-
sidering a prize n(v) for each node v. The objective function
has two components: the sum of the prizes of the nodes not
included in the solution (the “lost prize”), and the cost of the
edges picked in the solution. There are two versions of these
problems, depending on the specific objective function.

Problem 2 [Prize Collecting Steiner Tree (MinGW)]: Given
a graph G(V,E) with edge penalties w : E—R™ and node
penaltiest: V—R™*, find a connected subgraph T(V',E’) that
minimizes the cost of the tree plus the lost prize

2 n) + Yw(e)
veV\V’ eck’

Problem 3 [Prize Collecting Steiner Tree (NetWorth)]:
Given a graph G(V,E) with edge penalties w : E->R* and
node prizes m: V= R™, find a connected subgraph T(V', E')
that maximizes the prize minus the cost of the tree

T ) — Tw(e).
veV ek
1) Anomalies as Heavy Subgraphs: The models for graph

anomaly detection discussed in this section are all based on
the Steiner connectivity principle of finding connected sub-
graphs with high prize and as little cost as possible. Nodes or
edges that are deemed to be anomalous or interesting will be
assigned a high prize, whereas normal or uninteresting ones will
be assigned a low prize or even a penalty. The goal then becomes
finding an optimal Steiner subgraph as in Problems 2 and 3. The
formulations in this category differ on how the anomaly scores
are assigned. In Fig. 1, we show a generic example of the anom-
aly detection task modeled as a Steiner connectivity problem.

A. Models and Problem Formulations

1) Graph Scan Statistics: As observed in [92], scan sta-
tistics involve formalizing a notion of “anomalousness”
for a subset of data, and then scanning through the data to
efficiently find a subset that optimizes an anomaly score.
Originally, scan statistics were developed for disease sur-
veillance in spatial data and involved finding simple regions,
such as disks [59], [66], [71], [72], [74]. Later, scan statistics
were extended to network data by considering scores for
connected subgraphs.

Given a graph G(V,E), we assume each node v € V has
two associated values, which vary with time: 1) a baseline
count b'(v), which indicates the count that we expect to see
at the node v at time t, e.g., the number of people in a county
corresponding to node v; and 2) an event count or obser-
vation c'(v), which indicates how many occurrences of an
event of interest are seen at the node, e.g., the number of
cases of a disease in a county. For simplicity, we omit time in
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our notation, but all the techniques presented below extend
easily to network streams.

The methodology of scan statistics formalizes anomaly
detection as a hypothesis testing problem. Under the null
hypothesis Hy, it is “business as usual,” and the event counts
for all nodes are generated proportionally to their baseline
counts. Under the alternative hypothesis H; (S), counts of a
majority of the vertices are generated (again) with rate pro-
portional to the baseline counts, but there exists a small con-
nected subset S C V of vertices for which the counts are gener-
ated at a higher rate than expected. Then, the goal is to find a
set of vertices S that maximizes an appropriate scan statistic
function F(S) that compares event counts to baseline counts

F(S) = F(C(S), B(S), 8)

where C(S) = X, c(v) is the total event count or weight
of S, B(S) = X5 b(v) is the baseline count of the set, and
B represents possible additional arguments to F.

Depending on the assumptions that are satisfied by the
data, there are two broad types of scan statistics: parametric
and nonparametric.

Parametric scan statistics assume that counts observed
at each node are generated from some parameterized
distribution [27], [29], [33], [53], [64], [66], [74], [79],
[83], [99]. Common choices are distributions from the
exponential family, such as Poisson or Normal, and the
scan statistic is typically the log-likelihood ratio

P(C(S) | Hi(S))

F(S) = log 5wy oy ) -

A well-known example of parametric scan statistics is
the Kulldorff statistic commonly used in disease surveil-
lance [35], [59], [60], [73], which is defined as

c(s)

c(s) tog( Sy + () - ()
cv) = C(S) cv)
*log( A —=p(5)) ~CV) 1og( 577

with 6= (C(V), B(V)). The extension to temporal data is eas-
ily obtained by defining B(S) and C(S) as the aggregate base-
line and event counts over some time window T : B(S) =
Zle Zves bi(v) and C(S) = ZiTzl 2es c'(v). We refer to
[59], [73], and [81] for discussion on the strengths and limi-
tations of parametric scan statistics.

Nonparametric scan statistics do not assume an underly-
ing distribution or process on the graph. Instead, they first
estimate a p-value for each vertex based on empirical calibra-
tion by comparing the current features of this vertex—c'(v)
and b'(v)—with its features in the historical data—c'™7,...,
¢(w) and b7 T,..., b""}(v) for some time window size T.

Under mild assumptions [28, Th. 1], the calibrated
p-values are uniform on [0,1] if there is no anomalous
activity among them. The problem of anomaly detection
is then formalized as a hypothesis testing problem for
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Fig. 3. Example of scan statistics in a Twitter network of users, tweets (blue squares), keywords (red diamonds), and locations (yellow
rounded square). For a significance level of a = 0. 05, the subgraph S contains 6 out 11 significant nodes (i.e., p-value below a). Under
the assumption that p-values are uniformly distributed under “normal” conditions, a scan statistic will assign a high score F(S) to this

subgraph.

testing whether the empirical p-values are uniformly dis-
tributed on [0, 1] [73], [81], [87]. An example of a nonpar-
ametric function is the Berk—Jones (BJ) scan statistic [18]
used for civil unrest events and network intrusion detec-
tion [28], [66]. In this setting, each node v has a p-value
p(v) € [0,1], and, for a significance level a, the event
count w(v) is 1 if p(v)<a (i.e., the node is significant)
and 0 otherwise. This scan statistic is defined as

W(S)/|S

F) = g 51 T sl ")
ws) . 1-ws)/Is|
) e T=a )

with 6 = a4
The abstract problem here is to find a connected subgraph
S that maximizes one of the functions F(S) described above.

Problem 4 (Network Scan Statistic Optimization): Given
a graph G(V,E), a score function F(.), and the associated
counts for the model, the objective is to find a connected
subset S ¢ V that maximizes F(S).

Cadena et al. [23] show that this problem is NP-hard,
by reduction from Steiner tree. Intuitively, in Problem 4,
we want to connect a set of “interesting” nodes—for
instance, nodes with p-value below a—while using as few
noninteresting nodes as possible. We note that this hard-
ness result contrasts with the case without any connectivity
requirement, where the optimal value of the scan statistic
can be computed in polynomial time because of a linear
ordering property [73]. Motivated by this, a size-constrained
version of the problem is introduced in [22], which can be
solved using a fixed parameter tractable algorithm.

Problem 5 (Network Scan Statistic Optimization With Size
Constraint): Given a graph G(V, E), a score function F(.), the
associated counts for the model, and a size parameter k,
the objective is to find a connected subset S € V, |S| < k, that
maximizes F(S).

We illustrate the general methodology of scan statis-
tics in Fig. 3. The example represents a heterogeneous
Twitter network in which each node has a specific type:
user, tweet (blue squares), keyword (red diamonds), and
geographical location (yellow rounded square). Every
node has a p-value, and we have identified a potentially
anomalous connected subgraph S. For a significance level
of a = 0.05, S contains 6 out 11 significant nodes (i.e.,
p-value below a), which is well above the expected value
under the assumption of uniformly distributed p-values.
A scan statistic that assumes uniformity will assign a
high score F(S) to this subgraph. Table 1 shows examples
of commonly used scan statistics functions. We discuss
applications in Section II-C.

2) Heaviest Dynamic Subgraph and Extensions: Bogdanov
et al. [20] propose another method based on Steiner con-
nectivity. In their setting, we are interested in finding a sub-
graph of anomalous or interesting edges rather than nodes.

The authors define an edge-evolving network over a
set 7= {t;,...,t;} of timestamps as a tuple (G(V,E),W,T),
where 1) G(V,E) is an undirected graph; and 2) W= {wtl, e
w2} is a family of edge weight functions; w'(e) denotes the
weight of an edge at time t, and this weight can be positive
or negative. Informally, the weight of an edge represents
its importance or anomalousness. For example, a positive
edge may indicate increased interaction between two users
in an online social network. Mongiovi et al. [69] define
w'(e)=—logp'(e) /a,wherep'(e)isthe p-valueassociated with
the edge at time t, and a denotes a significance level thresh-
old. For two timestamps i,j, such that t; <i <j < t,, we say
that [i,]] is a subinterval of [t;, t;] and wliil(e) = Zte[i,j]wt(e).
A temporal subgraph of G is a pair (G'(V’, E), [i, ]]), where
G is a connected subgraph of G and [i,]] is a subinterval of
[t;. t2]. The score of a subgraph G’ in the interval [i,]] is the
sum of the weights of the edges in E’ during the interval score

(G W, (i, ]) Z:eeE Zk—lwk(e)
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Non-Parametric Scan Statistics

The following definitions are by default, unless otherwise indicated: p(v) refers to the p-value of node v,

N(S) =[S, W(S,a) =3 c5 I(p(v) < o), where I(True) = 1 and I(False) = 0.
Name Original Form
Berk-Jones [18] F(S)= max N(S)KL( V%EQS? , Q)
Higher Criticism [32] F(S) = aé%a,”fm%
Kolmogorov-Smirnov [102] F(S)= max +/N(S)- < N((Ss? — a)
. _ (W (S,) W(S,a) W(S,a)
Anderson-Darling [38] F(S) = Sncljfax\/N(S) <7N( ) a) ) ( NG )
: — N (S) N 5)
Jager-Wellner [54] F(s)= max /N(S)- (1 -V e—Ja- )1—a )
Stochastic Ordering of p-Values [8] F(S) = N(8) fgmes %
Fisher’s Test [41] F(S) = -2 ,cslogp(v)/N(S)
b T ves L(p(v)<a)Togp(v)
Truncated Fisher’s Test F(S) = N <n;%i(,, i (5
Weighted Fisher’s Test F(S) = = ,ecslog(w(v)p(v))/ > ,es w(v), where w(v) is the predefined weight of
vertex v
Stouffer’s Test [93] F(S) = —Zues q)N((;;p(v)), where ®~1(-) refers to the inverse cumulative density

function of standard Gaussian distribution

Edgington’s Test [37] F(S)

= —> peg logp(v)/N(S)

Parametric Scan Statistics

The following definitions are by default, unless otherwise indicated: C(S) = >~ g c(v), B(S) = 3 c5b(v)

Positive Elevated Mean Scan Statistic [81] F(S) =3 ics z;/\/N(S)

Elevated Mean Scan Statistic [81] F(S) = Xics2:)?/N(S)

Expectation-based Poisson Scan Statistic [73] F(S) = C(S)log(C(S)/B(S)) + B(S) — C(S5)

Kulldorff Scan Statistic [59] F(S) = C(S)lo (C(S>) +(C = C(8)log (5251 ) — Clog (§), where C =

E &\ B(3) &\ B—B(5) &\B ) =

> ey c(v) and B=3%7

Expectation-based Gaussian Scan Statistic [73] F(S) = (C(S) — B(S))Q/(QB(S)), where o(v) refers to the standard deviation of c(v)
that is calibrated based on its historical observations, C'(S) = >_, c g(c(v)b(v)) /o (v)?, and
B(S) = 3, b(v) /o (0)?

Expectation-based Exponential Scan Statistic [73] F(S) = B(S)log(B(S)/C(S)) + C(S) — B(S), where C(5) =
> ves c(v)/b(v), B(S) = |5

Spatial Scan Statistic for Multinomial Data [55] F(S) =3, {Ck(S) log( Cg"((;) )+ (Cr — Cr(S5)) log %’(‘éf)} —> % Crlog(C/0C),

where C},(S) refers to the count of vertices of category k, C(S) =

|S], and C' = |V|

Bogdanov et al. model the anomaly detection task as the
following optimization problems.

Problem 6 [Heaviest Dynamic Subgraph (HDS)]: Given an
edge-evolving network (G, W, T), the objective of the heavi-
est dynamic subgraph problem is to find a temporal subgraph
(G, 1i,j1), over all possible subgraphs G’ of G and subintervals
[i,j] of 7, such that score (G/,W, [i,j]) is maximized.

Problem 7 [Heaviest Subgraph (HS)]: The objective of
the heaviest subgraph problem for a given (G,w[tl’tZ]) is to
find a temporal subgraph G’ of maximum score in a fixed
interval [tq, t5].

Intuitively, the goal is to find a subgraph and time inter-
val where many of the edges have positive weight. However,
as usual in Steiner connectivity problems, we are willing to
include negative edges in the solution if it helps us to con-
nect two components of high positive weight and improve
on the objective function. Bogdanov et al. [20] note that
the HS problem is equivalent to NetWorth (Problem 3). In
Fig. 4, we show an example reduction from HS to NetWorth.
The main idea is to replace all the adjacent positive edges by
nodes of prize equal to the total edge weight and make the
remaining edges have positive weight.

834 PROCEEDINGS OF THE IEEE | Vol. 106, No. 5, May 2018

In the HDS problem, we are interested in finding one
single subgraph and time interval that has the highest objec-
tive value. Mongiovi et al. consider an extension of the prob-
lem where we want to find as many nonoverlapping heavy
temporal subgraphs as possible [69].

Problem 8 [Signi@ant Anomalous Regions (SAR)]: Given
an edge-evolving network (G,W,T) and a threshold T, the
objective is to find a set of regions (temporal subgraphs)
R = {R,R,..., Ry} in decreasing order of scores, such that
the score of each region R;, without considering the score
of positive edges overlapping with higher scoring regions,
is at least T.

3) EventTree+: Another Steiner-based method was
4]. The authors
define activity networks, where each node v has a positive

recently proposed by Rozenshtein et al. [8

prize n(v) and each edge e has a positive cost or distance
w(e). Node weights model the importance or intensity of
the activity at that node, for instance, the number of posts
madebyauserinasocial network, and we learn them froma
collection of past observations. The goal is to find a subgraph
that optimizes the tradeoff between prize and distance. In
particular, the authors propose to find a subset of nodes
S ¢ V that minimizes
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Fig. 4. (a) Example of an instance of HDS with four time intervals.
Thick edges have weight +1 and thin edges have weight —1. The HDS
includes all the edges and spans subinterval [2, 3]. For comparison,
the HS in subinterval [1,1] has a score of 1 by using either (A, C) or
(D, E). (b) Reduction of an instance of HS to an instance of NetWorth.
Nodes A, B, and C are merged into a node of prize 3 [weights of

(A, B), (B, ), and (C,A)]. Nodes D, E, and F are merged similarly.
Negative edges become positive.

AM(VA\S) + W(S)

where [1(-) and W(.) are functions of the total prize and dis-
tance of S, respectively, and A is a regularization parameter
that controls the tradeoff between the two functions. When
M(S) = X,csm(v) and W(S) is the total cost of the edges used
to connect S, the objective becomes MinGW. The authors
refer to this particular case as EventTree+.

B. Methods and Techniques

Steiner connectivity problems are computationally chal-
lenging in general. In particular, the NetWorth problem,
which all the models above are related to, cannot be approx-
imated to a constant factor [17]. Common techniques to
address this strong complexity result involve either 1) solving
an easier Steiner problem similar to NetWorth; or 2) using
simple fast heuristics with good empirical performance.

1) Solving MinGW Instead of NetWorth: Despite the inap-
proximability results for NetWorth, the MinGW problem is
somewhat easier and admits an approximation algorithm.
Goemans and Williamson proposed a 2-approximation’
to the MinGW objective [44] with a time complexity of
O(n 2log n). This algorithm tends to be used as a heuristic
for NetWorth. For example, Rozenshtein et al. [84] use it
to solve EventTree+, and Bogdanov et al. [20] mention that
the Goemans—Williamson (GW) algorithm can be used
as a subroutine in their proposed method for solving the
HDS problem.

'An algorithm for a minimization problem is an a-approximation if it
can find a solution within a factor a > 1 of the optimum solution for any
instance of the problem.

We give a brief review of the primal-dual schema of
Goemans and Williamson [44] for MinGW. Let (G(V, E), w, )
be an instance of MinGW, x, be a variable for each edge, and
z7 be a variable for each subset of nodes. The rooted version
of the problem, i.e., when a root node r must be included
in the solution, can be formulated as the following integer
program (MinGW-IP)

minimize Y w,x, + Y. zrmiT)
ecT TcV—{r}
subjectto Y. x(e) + Y zr>1 vScV—{r}
ecdllS) T2S
> zr<1 vScV —{r}
TcV—{r}
Xe,z7 € 10,1} veeE, TcV —{r}

It can be shown that this integer program is equivalent
to MinGW. Intuitively, x, = 1 if an edge is selected in a solu-
tion to MinGW, and zy = 1 only for the set T of nodes not
spanned by the edges. The first constraint ensures that the
subset S € V — {r} is either part of the solution, in which case
at least one of the edges in its cut 8S) must be selected, or
else S is a subset of not-spanned nodes T. The second con-
straint ensures that only one subset of nodes is not spanned.

The linear relaxation (MinGW-LP) of (MinGW-IP)
is obtained by replacing the constraints x, € {0,1} and
zr € {0,1} by x, € [0,1] and z7 € [0, 1]. The dual (MinGW-D)
of (MinGW-LP) is

maximize Z A
Scv—{r}

z Ys <w
S:ecdllS)

D ys < iT)
ScT

ys=0

subject to VeeE

vTcV—{r}
vScV—{r}.

The GW algorithm tries to maximize the dual program
(MinGW-D). The main idea is to grow the yg variables as
much as possible; that is, until either the first or second
constraint becomes tight. The algorithm has two phases:
growth and pruning. In the growth phase, we maintain a
set of clusters. If a cluster has nonzero yg, we say that it is
active; otherwise, the cluster is inactive. Initially, all nodes
are in active singleton clusters, except for the root, which is
inactive. Let S, denote the cluster containing node u. The
algorithm maintains a quantity d,, for each node u, which
captures the sum of all dual variables yg, such that u € S over
the past rounds. For any edge e = (u,v), the algorithm will
ensure that d,, + d, < w,. In a given round, the dual variables
associated with all the active clusters grow at the same rate
until one of the following events happen. 1) For some edge
e = (u,v) with S, being active and S, being the root com-
ponent, we have d,, + d, = w,. In this case, we say that the
edge (u,v) becomes tight, S, is merged with the root cluster,
and it becomes inactive. 2) For some edge e = (u,v) with
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S, and S, being distinct active clusters, we have d,, + d, = w,.
In this case, we say that the edge (u,v) becomes tight, and
the clusters S, and S, are merged to form a new cluster.
3) For some cluster T, we have ZSQT Vs = nET) In this case,
the cluster T becomes inactive. The growth phase ends when
all the clusters are inactive, and the solution returned is the
set of tight edges F. In the pruning phase, we find a tree F 'cF
by discarding edges whose removal does not degrade the
quality of the initial solution.

As mentioned above, one drawback of this algorithm is
its high running time of O (n2 log n). There have been efforts
to make it more scalable by using more efficient data struc-
tures. Cole et al. [30] develop an algorithm that runs in time
O(e(n +m) log2 n) , where € is a parameter that controls the
tradeoff between running time and approximation error. The
main idea is to avoid having an edge whose two endpoints
are both active clusters; this technique is referred to as edge
splitting by the authors. Initially, every edge (u,v) in the
graph is “split” in half by adding an artificial node t between
u and v; this effectively creates two edges (u,t) and (t,v). In
every growth phase round, if two clusters are merged and, as a
result, two active clusters become neighbors, the edge is split
again ensuring that at most one of the endpoints is active.
Of course, the edge cannot be split indefinitely; an edge that
cannot be split is called a terminal. The user determines how
many times an edge will be split via the parameter €.

2) Fixed Parameter Tractable Algorithms: Numerous
heuristics have been developed for Problem 4, including
some based on Steiner subgraphs, which are discussed later.
However, no rigorous algorithms are known, in general.
We show that Problem 4 is fixed parameter tractable [34],
by giving a solution to Problem 5. This means that we can
find an optimal solution in time O(akq(n,m)), where a is
a constant and g(n,m) is a polynomial in n and m. That is,
the running time is polynomial on the size of the graph, but
exponential on the solution size. In contrast, a “brute force”
approach would need (Z) = O(nk) time to examine every
possible connected subset of nodes of size at most k.

Cadena et al. [22] follow this approach to propose the
only existing methods for scan statistics optimization in
general graphs with rigorous theoretical guarantees. Their
algorithms ColCodeNP and ColCodeP find a subgraph S
with optimal score F(S) of size at most k, where k is a param-
eter, in time O((Ze) Fm log(n */ 6)), where € is a probability
of failure. The authors also propose a preprocessing step that
makes it possible to discover large anomalous subgraphs
while keeping the parameter k below 10, without losing the
approximation guarantees.

The algorithms of [22] rely on the color-coding tech-
nique of Alon et al. [7]. The idea is to color the nodes of
the graph uniformly at random using K = {1, ...,k} colors
and restrict the search to “colorful” solutions, which are
subgraphs with distinctly colored nodes. This immediately
leads to an efficient algorithm because: 1) colorful solutions
can be computed using a simple dynamic program; and
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2) if the coloring is done randomly, there is a reasonable
probability that the optimal solution is colorful. By solving
the dynamic program many times with different random
color assignments, the optimal solution of size k will even-
tually be colorful, and we will find it.

As a concrete example, we show how to use color coding
to solve the parameterized version of Problem 3, i.e., maxi-
mize NetWorth over all subgraphs of at most k nodes. Let
K ={1,...,k} be a color set. We define a coloring as a func-
tion col:V — K that maps nodes to colors; col(u) is the color
of node u. For a given set of nodes S and a color set T C K,
we say that a subset of nodes S is colorful (with respect to T)
if every node in S has a distinct color from T; that is, for all
u,v € S, col(u) # col(v) and col(u), col(v) € T.

We use a dynamic program to find subgraphs that are
colorful and maximize the NetWorth objective. For every
node v and color set T ¢ K, let OPT(v, T) be the NetWorth
objective of the optimal tree that 1) contains v; and 2) is
colorful with respect to T. When the color set is a singleton,
this quantity is easy to compute

w(v) :

—0o0

col(v) =s
col(v) #s.

Now, for a color set T of size greater than 1, we can compute
OPT(v, T) recursively

OPT(v, {s}) = {

OPT(v,T) =
(OPT(v, Ty )+ max{OPT(v, Ty) — w(v,u),0})
u:(u,v)€E
Ty, Ty TyNT,=T
where the outer maximum is over all possible partitions
of T into two subsets T; and T, and all possible neighbors
u of v. The inner maximum denotes that we only want to con-
nect two subtrees if the net improvement in objective value
is positive. The final answer is OPT = maxvev OPT(v, K).
We can verify that this dynamic program correctly
returns the best NetWorth over all connected subgraphs of
size at most k, as long as the optimal subgraph is colorful.
By repeating the algorithm for many random colorings, this
subgraph will indeed be colorful with high probability. The
probability that any tree of k nodes, in particular, the opti-
mal tree, is colorful is

! -
.Zek

=

and the probability that it is not colorful in any of t random
colorings is

Fore > 0, lett = —eklne, and we can bound the prob-
ability of not finding the optimal solution

k
1 —e Ine
1 - =
(7 &b
Theorem 2.1 (Follows From [7]): The color-coding tech-
nique yields an algorithm for the parameterized NetWorth

< o(—¢ (¢ ne) <e.
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problem that finds the optimal NetWorth value with prob-
ability at least €. The time complexity of the algorithm is
0] ((Ze)km log(1/ 6)) and the memory requirement is 0(2kn).

We note that this parameterized complexity approach is
also applicable to the other problem formulations presented
in this section. We briefly describe the main ideas for the
case of nonparametric scan statistics from [22], using the
BJ scan statistic as an example. The first idea is that the BJ
statistic is an increasing function of W(S) if W(S)/|S| > a and
S| is constant. Consider a coloring using a set K as before.
For a node v and subset of colors T ¢ K, we let OPT(v,T) =
maxg W(S), where the maximization is over all connected
and colorful sets S € V, such thatv e S, |S| =|T|, and {col(u) :
u € S} = T. In other words, we only consider a set S if each
node in the set has a distinct color from T. OPT(v,T) can
be computed by a dynamic program with the following
recurrence. For any node v and color s, OPT(v, {s}) = w(v) if
col(v) =, else OPT(v,{s}) = —o0. If |T|> 2

OPT(v,T)= max {OPT((v,T;) + OPT((u, T,)}
u:(u,v)eE
T,,T,cT
where the maximum is over all partitions Ty u T, = T and all
neighbors u of v. This can be used to obtain a bound similar
to Theorem II.1 for nonparametric scan statistics. The gen-
eral method can be extended to parametric scan statistics as
well, but additional information needs to be maintained in
the dynamic program.

Finally, Cadena et al. [22] design an efficient preprocess-
ing, referred to as a refinement step, which involves com-
pressing subsets of nodes into “supernodes.” The size of a set
S after refinement is determined in terms of the nodes and
supernodes in it. This new size is called effective size, and,
in practice, it is significantly smaller than the original size
of S, making it possible to discover anomalous subgraphs
with hundreds or thousands of nodes while keeping the
parameter k in the single digits.

3) Heuristics: Besides the two general approaches dis-
cussed above, many problem-specific heuristics have been
proposed. These algorithms are designed to be scalable
and exhibit good empirical performance; however, in most
cases, no quality guarantees are known for these methods.

Heuristic algorithms for parametric scan statistic opti-
mization include a) a simulated annealing approach that
is based on a concept of “non-compactness” for penalizing
clusters [35]; b) the additive GraphScan algorithm, which
connects clusters based on shortest path distances [92];
c) sparse learning method based on edge-lasso regulariza-
tion [88]; d) spectral scan method based on graph Laplacian
regularization [89]; €) submodular optimization algorithm
based on Lovasz extensions [87]; and f) semidefinite pro-
gramming algorithms based on linear matrix inequalities for
characterizing the connectivity of subsets [6], [80], [81].

Nonparametric scan statistics in networks have only
been explored recently. Chen and Neill present NPHGS, a
fast iterative heuristic algorithm to optimize nonparamet-
ric scan statistics on general graphs [28]. NPHGS builds an
anomalous connected subgraph S by starting at a significant
node v and trying to add neighbors of v to S if it increases the
target scan statistic F(S). Zhou and Chen [104] take a differ-
ent approach based on sparse optimization. They propose an
extension of the projected gradient descent algorithm [15]
that respects the connectivity constraints.

For the HDS problem, Bogdanov et al. [20] propose
Meden. The idea behind their algorithm is to find a solu-
tion to HDS by repeatedly solving the HS problem (i.e., for
a fixed subinterval). We can find a solution to HS using the
GW algorithm, but the authors propose a heuristic called
TopDown, with running time linear in the number of edges.
Further, naively solving HS for all the possible subintervals
would take time proportional to O (|T |2); see Problem 6
for notation. The authors propose an aggregation scheme
that makes it possible to process all the subintervals in time
O(|7 |log(|T])), with an extra overhead of O(log(|T|)) for
running the aggregation procedure.

One could use Meden directly for the SAR prob-
lem by repeatedly running the algorithm and changing
the weight of the returned edges to —o. However, this
would not be very efficient. Mongiovi et al. [69] propose
NetSpot, which efficiently alternates between finding
a subgraph of high weight (for a fixed subinterval) and
finding a subinterval that maximizes the score (for a fixed
subgraph).

Finally, for EventTree+, in addition to using the GW
algorithm, Rozenshtein et al. [84] propose the following
heuristic. First, make a complete graph by putting an edge
(u,v) between every pair of nodes with weight equal to the
shortest distance between u and v in the original graph.
Then, starting with an empty solution S = @, we add a
node from V\S that decreases the MinGW objective the
most, and we repeat until the objective does not decrease
anymore.

Although some of the above methods provide qual-
ity guarantees if we relax the connectivity constraint [87],
[104], these bounds do not directly apply to the original
detection problem. In Table 2, we provide a summary of the
different methods for anomaly detection based on Steiner
connectivity.

C. Applications

The methods based on Steiner connectivity that we dis-
cussed above have been applied to a wide range of domains.
One notable advantage of these methods over other graph-
based approaches—such as the one in the next section—is
flexibility of the discovered regions. Steiner connectivity
methods can discover connected anomalous subgraphs of
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Table 2 Algorithms for Anomaly Detection Based on Steiner Connectivity. n and m Are the Total Numbers of
Nodes and Edges in the Input Graph, Respectively; t Is the Number of Snapshots; d Is the Maximum Depth to
Explore;11s the Number of Iterations (a Parameter); k Is the Effective Solution Size Parameter

Method Problem Time Complexity Performance Bound
AdditiveGraphScan [92] Nonlinear O(mn + n?logn) No
DepthFirstScan [90] Nonlinear O(n - 29) No
EdgeLasso [88] Quadratic O(l-n3) No
GraphLaplacian [89] Quadratic O(l - n3) No
NPHGS [28] Nonlinear O(nlogn) No
GraphGHTP [104] Nonlinear O(mlogn) No
ColCodeNP, ColCodeP [22] | Linear, Nonlinear O(2F - eFmlog 2) | (1 — e)-approximation
TopDown [20] HS O(m) No
Meden [20] HDS, SAR O(m - |T|-1ogZ(IT])) No
NetSpot [69] HDS, SAR O(ml) No
EventTree+ [84] MinGW O(n?logn) 2-approximation

arbitrary shape, in contrast with methods based on den-
sity or communities, which tend to find only denser sub-
graphs of more uniform shape. This is especially important
in applications like biology and traffic congestion, where
the target subgraphs have elongated structure. Below, we
list some domains where the models that we presented
are popular.

« Transportation networks: Detecting traffic bottle-
necks in road or air networks using a parametric scan
statistic [9], and the HDS objective [20]. The Event-
Tree+ formulation has been used for identifying tour-
istic hot spots in urban settings [84].

+ Water distribution networks: Detecting pollution and
spread of contaminant plumes using parametric scan
statistics [76], [90].

+ Disease outbreak detection: Early detection of disease
outbreaks from information networks incorporating
data from hospital emergency visits, ambulance dis-
patch calls, and pharmacy sales of over-the-counter
drugs [90].

+ Social science: Detection of crime hot spots in geo-
graphic networks using a parametric scan statistic [68];

detection and forecasting of societal events, such
as civil unrest, using nonparametric scan statistics
[28], [29].

+ Image analysis: Detection of objects in images using a
method based on Steiner connectivity [50].

. Computer networks: Detection of viruses or worms
spreading from host to host in a computer network
[70]; intrusions in a computer network [56].

For a summary of the applications grouped by problem
formulation, see Table 3.

III. ANOMALY DETECTION BASED ON
DENSITY

In a static unweighted graph G(V, E), a subgraph induced by
a subset of nodes S € V is said to be dense if it has a “large”
number of edges. Many metrics that capture this informal
definition have been proposed, but we focus on three in this
section. The density of a subgraph S ¢ V is defined as

_ [ES)

(2)

Table 3 Applications of Anomaly Detection Based on Steiner Connectivity

Name Applications

Non-Parametric Scan Statistics

Berk-Jones [18]

Detection of disease outbreaks, civil unrest events, and human rights events in social media graphs [28]
Network intrusion detection [66]
Detection of illicit activities in container shipment data [66]

Higher Criticism [33]

Detection of rare and weak effects in genomics and genetics [53]
Multivariate disease outbreak detection [74]

HishersRlesH el Psychological studies [79]

Crime analysis [64]

Subnetwork bio-marker detection in genetics [99]
Multivariate disease outbreak detection [83]

Parametric Scan Statistics

Kulldorff Scan Statistic [59]

Disease outbreak detection [60]
Pattern detection in criminology [103], pediatrics [14], geriatrics [100], and psychology [65]

Elevated Mean Scan Statistic [81]

Disease outbreak detection [81]

Expectation-based Poisson Statistic [73]

Disease outbreak detection [72]
Water pollution detection [92]

Heaviest Dynamic Subgraph [20]h
Significant Anomalous Regions [69]s

Detection of anomalous actors in email network and traffic congestion [20]
Political events in Wikipedia and traffic congestion [69]

EventTree+ [84]

Detection of urban events and touristic hot spots [84].
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Here, E(S) is the set of edges in the subgraph induced
by S, and ) is the number of possible edges (i.e., pairwise
combinations) in a set of size |S|. p@iS) ranges from 0, if the
subgraph has no edges, to 1, if the subgraph is a clique. The
second metric we consider is a relaxation of a clique, also
called a quasi-clique. For a constant a € [0, 1], we say that a
subgraph induced by S ¢ Vis an a-quasi-clique if

£ =ES)|- a5 20

That is, S has at least a fraction a of all the possible
(‘2‘) edges. One weakness of these two metrics is that it is
trivial to find small subgraphs with high density, such as
2-cliques—any edge will do!—or 3-cliques, which are trian-
gles. A commonly used metric to address this weakness is
the average degree, defined as

|ES)
d(S) = B
Fig. 5 illustrates these definitions.

Different problem formulations to find dense sub-
graphs have been proposed. These formulations have been
used for anomaly detection in static networks [51] and in
dynamic networks by considering subgraphs in time inter-
vals with significant changes in density, or by formalizing
change in terms of density [19], [24]. We first describe
some notions of density that have been used and applica-
tions based on them. We also refer to a survey by Lee et al.
[63], which gives an overview of dense subgraph mining in
a larger context.

A. Models and Problem Formulations

1) Densest Subgraph and Variants: In the densest sub-
graph (DS) problem, we are given a graph G(V,E), and the
goalisto find asubset of nodes S ¢ Vthat maximizes the aver-
age degree d(S). In the example of Fig. 5, Sis the densest sub-
graph. This problem can be solved optimally in polynomial
time using Goldberg’s flow-based algorithm [46]. There is
also alinear-time greedy algorithm that yields a 1\2-approx-
imation [13], [25], which we describe in Section III-B.
In practice, this algorithm finds subgraphs with average
degree close to optimal.

Many variants of the DS have been considered, includ-
ing versions on directed and weighted graphs [57]. A recent
application of these variants is FRAUDAR [51], a method
for detecting anomalous or fraudulent product reviews
and users in e-commerce sites. The authors model reviews
and users as a bipartite graph—user u writes review v. Each
node v is assigned a suspiciousness weight a, indicating
some prior belief that the user or review is fraudulent, and
each edge (u,v) is assigned a weight c, ,, which represents
the suspiciousness of user u writing review v. Then, the goal
becomes finding a subgraph S that maximizes

Fig. 5. Example illustrating the different notions of density. G(V, E)
is a graph with |V| = 7. The set T = {v3, Vs, Vg, V;} is a 4-clique—i.e., it
has density 1. For the set S = {v3,v,4,Vs, Vg, V53, there are nine edges
with endpoints in S, so p(S) = 9/10 = 0.9. Therefore, T is denser
than S. However, the average degree of S is d(S) =9/5=1.8,
whereas the set T has d(T) = 6/4 = 1.5, so S is denser with respect
to the average degree measure. Finally, for a = 0.8, f;(S) = 9 —

104 = 1 and fy(T) = 6 — 6Q = 1.2, respectively. It can be verified that
T is the subset that maximizes f, in the entire graph, the optimal
quasi-clique.

ZveSav + Zu,veSCu,v
N

which is precisely the average degree in a weighted bipartite
graph.

In real-world networks, subgraphs with maximal aver-
age degree have been found to be large—sometimes trivially
spanning the entire node set V—and not very dense [98].
When we want to control the size of the subgraphs discov-
ered, we can add a constraint k to the densest subgraph
formulation. In the densest-k subgraph problem [40], the
goal is to find a subset S of size k with maximum number of
edges. This problem is NP-hard. When the constraint is to
find a set S of size at least k, we obtain the densest-at-least-k
subgraph problem; when the constraint is |S| < k, we have
the densest-at-most-k subgraph problem. Both variants (also
NP-hard) were proposed by Andersen and Chellapilla [10].
We note that all these formulations have been studied on
directed and weighted graphs as well [57].

Recently, Tsourakakis [97] proposed the k-clique dens-
est subgraph problem as a generalization of the densest sub-
graph problem. In this formulation, the goal is to find a set of
nodes that maximizes G (S) /|S|, where G, is the number of
k-cliques induced by the nodes in S. For k = 3, we obtain the
triangle-densest subgraph problem. Tsourakakis shows this
latter formulation discovers graphs that are denser than the
ones found by maximizing the average degree.

Finally, there are extensions to temporal networks as well.
Rozenshtein et al. [85] extend the average degree to dynamic
dense subgraphs, which they use to find interesting interac-
tion patterns in social networks. The authors define a net-
work stream over a set 7 = {t1,..., 12} of timestamps as a tuple
(V,&7), where 1) Vis aset of nodes, and 2) £ = {Etl Ve .,Etz} is
a set of edges for each timestamp. The goal of the authors is to
find a subset of nodes and timestamps with a high number of
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interactions. For a subinterval [i, ], the authors define El" to
be the set of all edges from time i to j: E (i) = uinEk. We note
that so far these definitions are analogous to the edge-evolv-
ing network and temporal subgraph used by Bogdanov et al.
for the HDS problem (Section II-A). However, Rozenshtein
et al. extend the notion of temporal subgraph to time intervals
that are not necessarily contiguous. The authors consider a
time interval set, which is a collection of nonoverlapping and
noncontiguous subintervals 7= {[il,jl], lizsj2)s -+l ,jm]}.
We say that the span of T is the total number of timestamps
covered by its subintervals: span(T) = X LTzll(jk — ). A time
interval set allows for more flexibility on finding temporal
periods with dense interactions; however, additional con-
straints on the size and span are needed to ensure that the
discovered subgraphs are in fact temporally compact. These
ideas lead to the following problem formulation.

Problem 9 [Dynamic Densest Subgraph (DDS)]: Given a
temporal network stream (V, &, 7), and parameters K and B,
find a subset S ¢ V of nodes and a time interval set T such
that |T| < K, span(T) < B, and the average degree induced
by S and T is maximized.

In contrast to the standard densest subgraph problem,
Rozenshtein et al. [85] show that DDS is NP-hard, and they
design efficient heuristics.

2) Cliques and Quasi-Cliques: Another set of problem
formulations focuses on cliques, which are the densest sub-
graphs one could have. In the maximum clique problem, we
are given a network, and the goal is to find the largest sub-
graph that is a clique [21]. However, this formulation is not
very practical for two reasons. First, the maximum clique
problem is hard to approximate in polynomial time to a fac-
tor of n'~¢ unless P = NP [47]. Second, finding a clique is
too restrictive because all of the edges have to be present.
In practice, we want to find subgraphs that are very dense,
even if they are not complete.

The notion of quasi-cliques addresses these two chal-
lenges, and four formulations for finding quasi-cliques
have been proposed. Abello and Resende [1] propose the
maximum quasi-clique problem, where, analogous to maxi-
mum clique, we want to find the largest subgraph that is an
a-quasi-clique, for some given a. They also study the maxi-
mum-k-quasi-clique problem, where the goal is to find the
a-quasi-clique of size k that maximizes f,. We are not aware
of direct applications of these two problems for anomaly
detection; however, they could be used as a viable alterna-
tive in an algorithm that looks for cliques as a subroutine.

The third notorious formulation is due to Tsourakakis
et al. [98], who propose the optimal quasi-clique (OQC) prob-
lem, where the goal is to find a set of nodes that maximizes
fa(S)=E(S) — ol , i.e., without any size restriction. These
concepts are illustrated in Fig. 5. The authors show that sub-
graphs with a high f, score have high edge and triangle den-
sity, and they have small diameter—all desirable properties
for dense subgraphs. Furthermore, they apply their method
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for finding OQCs to discover groups of correlated genes in
gene coexpression networks and to discover authors with
similar research interests in coauthorship graphs.

Finally, Cadena et al. [24] extend the definition of quasi-
clique to weighted and signed networks. In their setting, every
pair of nodes (u,v) has a weight w(u,v) € R, with w(u,v) =0
representing the absence of edge (u,v). Additionally, each
pair has a penalty a(u,v), instead of having a uniform a as in
the standard a-quasi-clique definition. Then, the authors pro-
pose the generalized optimal quasi-clique (GOQC) problem,
which asks for a set of nodes S ¢ V that maximizes f, (S) =
2 ves(w(u,v) — a(u,v)). By considering weights and penal-
ties in a network stream, Cadena et al. also propose a prob-
lem formulation for anomaly detection in signed network
streams. Let (V,W,A,T) be a network stream over a set 7=
{t1,...,to} of timestamps. W= {w b .,wtz} are the weights or
observations at each timestamps, and A = {a h...a tz} isaset
of expected values or observations. Intuitively, at timestamp
t, we expect w'(u,v) to be similar in value to a‘(u,v), and large
deviations are indicative or anomalous activity in that edge.
This leads to the problem of finding a subgraph with maxi-
mum GOQC objective score for each timestamp.

Problem 10 [Event Detection in Signed Networks (EDSN)]:
Given a signed network stream (V, W, A, T), find a subset of
nodes S C V that maximizes

far(S) = X W' (wv) —a'(u,v)) @
u,ves
for each timestamp t € 7.

Cadena et al. [24] use EDSN to detect protests in politi-
cal databases and congestion in highway networks. We note
that, despite the extensive literature in dense subgraph
mining, the problem of finding dense subgraphs in signed
networks has been relatively unexplored. Most existing
methods and formulations assume the weights of the graph
are nonnegative, and there is no simple way to extend these
methods to the signed case. There is work on community
detection in signed networks [62], where communities are
defined in terms of density; however, community detection
and dense subgraph mining have fundamentally different
objectives [63].

3) EventAllPairs+: In Section II, we described the model
of Rozenshtein et al. [84] for event detection in activity net-
works. Recall that in an activity network, each node v has a
positive prize mifv), which represents the anomalousness of
the node, and each edge e has a weight w(e) that represents
distance. The goal is to find a compact subgraph with high
weight; that is, a subgraph S that maximizes AM(S) — W(S),
where M(.) and W(.) are, respectively, functions of the total
prize and edge weight of S. The authors consider the sum of
pairwise distances for the edge weight function: W(S) = 1\2
2 vesW (u,v). In order to avoid negative values on the objec-
tive function, the authors add the total pairwise distance to
obtain the following objective to maximize:
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E(S) — W(S) + W(V)

= Z”(V)—% > w(u,v) +% > w(u,v).
ves u,veV

u,ves

The authors call this problem EventAllPairs+, and they
show that it is a variant of the MaxCut problem, so similar
techniques to the ones used for finding dense subgraphs can
be applied in this setting. We note that, to the best of our
knowledge, Rozenshtein et al. are the only authors to con-
sider both Steiner connectivity and density for graph anom-
aly detection in the same problem formulation.

B. Methods and Techniques

In Section II-B, we described various techniques for
approximating Steiner connectivity problems, such as
linear programming and fixed parameter tractable algo-
rithms. However, dense subgraph mining introduces
additional computational challenges, and a different set
of methods is required. For instance, the maximum clique
problem is known to be W-hard [1], [34], and thus it does
not admit a fixed-parameter tractable algorithm. Because
of the connection with clique, parameterized complexity
is ineffective for the other variants of density problems as
well, such as densest subgraph and OQC. Two techniques
that have been successful for these problems are 1) a
greedy algorithm due to Charikar [25]; and 2) semidefinite
programming [45].

1) Charikar’s Greedy Algorithm: The DS problem can be
solved in polynomial time by a reduction to network flow [46].
Goldberg’s procedure consists of multiple invocations to a min-
cut algorithm and runs in time (n(n + m) log(n) log(n + m)).

Even though this algorithm finds an optimal solution,
the high running time and multiple reductions to min-cut
make it impractical. Instead, most existing work on DS is
based on the greedy algorithm of Charikar [25]. The main
idea of the algorithm is to “peel” low degree nodes off the
graph one by one and return the subgraph that has high-
est average degree at any point of the algorithm. More for-
mally, we start with a graph Gy = G. At iteration i of the
algorithm, we remove the node that has the lowest degree in
the graph G;_; to obtain the graph G;. We return the graph G;
of maximum average degree. The pseudocode is presented
in Algorithm 1.

Algorithm 1 CharikarGreedy(G = (V, E))

Vo=V,Ey=F

Let Go = (‘/07E0)

fori=1to |[V|—-1do
T = argminyevy,_, deg(v)
Vi=Via\{z}, Bi = Eia \ {(z,0)|Vv € Vi1}
G; = (Vi, Ey)

end for

return arg max‘v‘(f1 d(Gy)

i=

It can be shown that this algorithm finds a subgraph
with density at least 1/2 of the optimal solution in time
o(IV] + E)).

Because of its simplicity and efficiency, Charikar’s pro-
cedure has been used extensively in many variants of the DS
problem as well as for other metrics. The same basic greedy
idea is at the core of FRAUDAR [51], the densest-at-least-k
problem [57], the algorithm for DDS of Rozenshtein et al.
[84], Tsourakakis’ k-clique densest subgraph problem [97],
and the OQC formulation [98]. In all these cases, except for
OQC, the algorithm also preserves similar guarantees on the
quality of the solution. In addition, the idea of peeling low-
degree nodes sequentially has been used to find the k-core
decomposition of a graph [16], which is a common subrou-
tine in various data mining tasks [43], [86].

2) SemideChite Programming: In their seminal paper,
Goemans and Williamson [45] proposed novel techniques
for designing approximation algorithms based on semidefi-
nite programming. Their work led to significant improve-
ments in algorithms for graph cuts and density problems.
We describe the main ideas below.

A matrix X € R™" is positive emidefinite if and only if
for every vector y € R", we have that yTXy > 0. Furthermore,
there exists some matrix V € R™", where m < n, such that
X = VTV. We may also use the notation X 0 to denote that
matrix X is positive semidefinite, and we assume that X is
symmetric. A semidefinite program (SDP) is an optimiza-
tion problem of the form

n n
maximize or minimize Z ch—]—xlj
i=1j=1
n n
subject to 2 XX = by, vk
i=1j=1
xi,j = in vl S l] S n

Here, we are looking for a matrix of variables X that

. n n . .
optimizes Zi:l E]-:lc,-jx under the given constraints.

1
We note that the objectiJ\Ie and the constraints are linear
in terms of the Xij variables, similar to the objective and
constraints in a linear program. Also, analogously to lin-
ear programming, SDPs can be solved in polynomial time,
albeit with a small error that can be ignored for all practical
purposes. Equivalently, we can formulate a vector program
in which the variables are vectors in R". It is often more

convenient to use this form to reason about approximation

algorithms
n n
maximize or minimize Z z Cij (Vi - Vj)
i=1j=1
n n
subject to 22 Qe (Vi V) = b vk
i=1j=1

v, eR" vi<i<n.
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Here, v; - v is the inner product of the vectors, which
is a scalar. The semidefinite and vector programs shown
above are equivalent. To see why, we can take a solution X
to the SDP and compute (approximately) the decomposition
X=V'Vin polynomial time. Let v; be the ith column of V;
then, x;; = v;-vj, and the v; vectors are a feasible solution
to the vector program. Conversely, we can take a solution
to the vector program and construct a matrix V whose ith
column is v;. Let X = VTV: then, X is symmetric and positive
semidefinite, and x;; = v; - vj, so X is a feasible solution to the
semidefinite program.

SDPs are used to design approximation algorithms as fol-
lows. First, the target problem is formulated as a quadratic
program (QP), in which the variables are restricted to be
integers. However, quadratic programming is hard, so we
relax it to a semidefinite program, which we can solve effi-
ciently. The core design challenge is rounding the variables
in the SDP to integer values, as required by the QP, in such
a way that we can claim an approximation guarantee on the
solution. Notice that this pipeline is analogous to the round-
ing of linear programs to obtain approximate solutions to
integer programs.

As a concrete example, we describe the algorithm of
Cadena et al. [24] for the GOQC problem. We start with
the following quadratic programming formulation for an
instance of GOQC with inputs G(V,E), w, and a

1+ x,x0 + XX + X, X

(QP) maximize Y. w(u,s) (

(u,s)eE 4 )
1+ X, X0 + X5x0 + Xy X
_ z a(u,s)( u*0 430 uts
u,s€V,u#s

subject to Xg,x, €{—1,1} vueV.

Here, each variable x,, except for xj, corresponds to
a node u € V. It can be shown that the above program is
equivalent to the GOQC problem. Without loss of general-
ity, suppose xo = 1, and let S be the set formed by the nodes
for which x, =1 in the optimal solution to QP. Then, S is the
optimal solution for GOQC in the graph G.
Now, consider the semidefinite relaxation of the problem

1+ v,vg + vyv +
(SDP) maximize Y. w(u, 8)( Put T s V0 T Pus

(u,s)eE 4
1+ v, v+ vevg + vy v,
_ Z G(M,S)( uv0 430 uVs
u,s€V,u#s
subject to Vv, =1 vueV

Vo, Vy € R vuelV.

After solving the SDP, the authors use the rounding
approach of [26] to find a set S’ as a solution to GOQC.
The authors then use a local search algorithm [98] to add
or remove nodes to S’ until a local maxima is found. Their
final solution is guaranteed to have objective value at least
O(logn) of the optimal, where n is the number of nodes.

842 PROCEEDINGS OF THE IEEE | Vol. 106, No. 5, May 2018

Feige et al. [40] proposed SDP-based algorithms for the
densest-k subgraph problem. They developed a rounding
procedure that yields an approximation ratio of at least max
(k/2n,n€_1/3), which was improved to (k/n) in subsequent
work [39]. Finally, Rozenshtein et al. [84] reduced their
EventAllPairs+ problem to an (s, t)-MaxCut problem, which
can be solved using semidefinite programming with a con-
stant approximation guarantee of 0.868.

3) Local Search Heuristic: In addition to the approxima-
tion algorithms discussed above, a local search heuristic has
been successfully applied to quasi-clique-related problems.
This heuristic starts with a candidate solution, usually a single
node or small sets of nodes, and then we add or remove nodes
to the solution until there is no improvement on the objective
score. This style of algorithm appears in the work of Abello
and Resende [1], Tsourakakis et al. [98], and Cadena et al.
[24]. As an example, we describe the local search procedure
for the OQC problem in Algorithm 2. Starting from a random
vertex, the algorithm adds nodes to the solution as long as the
objective score keeps increasing—b, becomes false. Then, we
try to remove a node if it increases the score, and we repeat
until either there is no improvement—b; becomes false—or
we reach a certain number of iterations Ty,,,. By changing
the stopping condition of the outer loop, we can obtain algo-
rithms for the problem formulations of Abello and Resende.

Algorithm 2 LocalSearchOQC(G = (V,E) , a, Tpnay)

Let S = {v}, where v is chosen uniformly at random
Let b, = TRUE
Lett=1
while b; and ¢ < Tihax do
Let b, = TRUE
while b2 do
if there is a v € V' \ S such that fo (S U {v}) > fa(S)
then S = SU {v}
else by = FALSE
end while
if there is a v € S such that fo (S \ {v}) > fa(S5)
then S = S\ {v}
else b; = FALSE
t=t+1
end while
return arg maxg:c(s,v\s} fo(S)

C. Applications

We briefly mentioned some applications for each for-
mulation in Section III-B, but we summarize them here for
completeness. For a summary of the applications grouped
by problem formulation, see Table 4.

+ Fraud detection in graphs: Hooi et al. [51] study the
problem of finding fraudulent users and products in
reviews. They propose a greedy algorithm FRAUDAR

to find a subgraph S maximizing a notion of density
similar to the average degree. They show that this
method finds a fraudulent community in the Twitter
network.
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Table 4 Applications of Anomaly Detection Based on Density

Name [ Applications

Densest Subgraph

Dynamic Densest Subgraph [85] [ Finding communities in temporal networks
FRAUDAR [51] [ Detection of fraudulent product reviews and reviewers

Cliques and Quasicliques

Optimal Quasiclique [98]

Finding thematic scientific groups in co-authorship networks and
correlated genes in co-expression networks

Generalized Optimal Quasiclique [24]

Detecting protests in political databases and
traffic incidents in highway networks

EventAllPairs+ [84]

Detection of urban events and touristic hot spots.

+ Event detection in signed networks: Cadena et al. [24]

use the GOQC problem to model events in signed
temporal networks. They apply their methodology to
the integrated crisis early warning system (ICEWS)
data set of political events [42], and they are able to
find several important civil unrest events.

+ Communities in temporal interaction networks:

Rozenshtein et al. [85] use the DDS problem to find
communities in different kinds of interaction net-
works, including Twitter and Facebook. The temporal
component is key in finding these communities.

+ Thematic scientific groups: Tsourakakis et al. [98] apply

the OQC problem to discover groups of researchers
with similar interests, according to the DBLP data set.

+ Correlated genes: As a second application, the same

authors examine a correlation network where genes are
connected by an edge if their correlation is at least 0.99.
Using Algorithm 2, the authors find a clique of 14 genes
highly correlated with a known tumor protein.

IV. CONCLUSION AND OPEN
QUESTIONS

Network anomaly detection is an important area with
a large number of applications. Formulations based on
Steiner connectivity, especially using network scan statis-
tics and density of subgraphs, provide a systematic approach
for anomaly detection and have been shown to have good
performance in practice. We have summarized some of the
key techniques developed for these problems. In particu-
lar, we find that fixed parameter tractability is a powerful,
but underexplored approach for designing efficient algo-
rithms, and it is likely to be useful in other graph mining
applications.

Extending the performance of all these methods is an
important area of research. Another important issue in anom-
aly detection, which has not been examined adequately, is the
role of uncertainty. Extending these methods to incorporate
uncertainty is an important area for future research. &
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